

Turing Machines
Part Two

Outline for Today

● The Church-Turing Thesis

– Just how powerful are TMs?

● What Does it Mean to Solve a
Problem?

– Rethinking what “solving” a problem
means, and two possible answers to that
question.

Recap from Last Time

Turing Machines

● A Turing machine is a program that controls a tape
head as it moves around an in&nite tape.

● There are six commands:

– Move direction

– Write symbol

– Goto label

– Return boolean

– If symbol command

– If Not symbol command

● Despite their limited vocabulary, TMs are surprisingly
powerful.

A Sample Turing Machine

● Here’s a sample TM.

● It receives inputs
over the alphabet

Σ = {a, b}.

● What strings does
this TM accept?

● Can you write a
regex that matches
precisely the strings
this TM accepts?

Start:
 If Not 'a' Return False

Loop:
 Move Right
 If Not Blank Goto Loop
 Move Left
 Move Left
 If Not 'b' Return False
 Return True

Start:
 If Not 'a' Return False

Loop:
 Move Right
 If Not Blank Goto Loop
 Move Left
 Move Left
 If Not 'b' Return False
 Return True

New Stu6!

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?

Real and “Ideal” Computers

● A real computer has memory limitations: you
have a &nite amount of RAM, a &nite amount of
disk space, etc.

● However, as computers get more and more
powerful, the amount of memory available
keeps increasing.

● An idealized computer is like a regular
computer, but with unlimited RAM and disk
space. It functions just like a regular computer,
but never runs out of memory.

Theorem: Turing machines are equal in
power to idealized computers. That is,
any computation that can be done on a

TM can be done on an idealized computer
and vice-versa.

Key Idea: Two models of computation
are equally powerful if they can

simulate each other.

Simulating a TM

● The individual commands in a TM are simple and
perform only basic operations:

Move Write Goto Return If

● The memory for a TM can be thought of as a string with
some number keeping track of the current index.

● To simulate a TM, we need to

– see which line of the program we’re on,

– determine what command it is, and

– simulate that single command.

● Claim: This is reasonably straightforward to do on an
idealized computer.

– My “core” logic for the TM simulator is under &fty lines of
code, including comments.

Simulating a Computer

● Programming languages provide a set of
simple constructs.

– Think things like variables, arrays, loops,
functions, classes, etc.

● Key Idea: If a TM is powerful enough to
simulate each of these individual pieces,
it’s powerful enough to simulate
anything a real computer can do.

Can TMs do: Loops?

● We’ve seen TMs use loops to solve problems.

– Our { anbn | n ∈ ℕ } TM repeatedly pulls o6 the
&rst and last character from the string.

– Our sorting TM repeatedly &nds ba and replaces

it with ab.

● In some sense, the existence of Goto and
labels means that TMs have loops.

● Hopefully, it’s not too much of a stretch to
think that TMs can do while loops, for loops,
etc.

Can TMs do: arithmetic?

● We’ve seen TMs that perform basic
arithmetic.

– We can check if two numbers are equal.

– We can check if a number is a Fibonacci
number.

● Hopefully, it’s not too much of a stretch
to believe we could also do addition and
subtraction, compute powers of numbers,
do ceilings and ?oors, etc.

Can TMs do: variables?

● We’ve seen TMs that maintain variables.

– You can think of our TM for { anbn | n ∈ ℕ } as
storing two variables – one that counts a number

of a’s, and one that counts a number of b’s.

– Our TM for Fibonacci numbers kinda sorta ish
tracks the last two Fibonacci numbers, plus the
length of the input string.

● It’s a bit larger of a jump to make, but
hopefully you’re comfortable with the idea
that TMs, in principle, can maintain
variables.

Can TMs do: helper functions?

● We’ve seen TMs with helper functions.

– We saw how to check for equal numbers of a’s and

b’s by &rst sorting the string, then checking of the

string has the form anbn.

– We can check if a decimal number is a Fibonacci
number by converting it to unary, then running
our unary Fibonacci checker.

● Hopefully you’re comfortable with the idea
that a TM could have multiple “helper
functions” that work together to solve some
larger problem.

What Else Can TMs Do?

● Maintain strings and arrays.

– Store their elements separated with some
special separator character.

● Support pointers.

– Maintain an array of what’s in memory,
where each item is tagged with its “memory
address.”

● Support function call and return.

– It’s hard, but you can do this if you can do
helper functions and variables.

A Leap of Faith

● Claim: A TM is powerful enough to simulate any
computer program that gets an input, processes
that input, then returns some result.

● The resulting TM might be colossal, or really slow,
or both, but it would still faithfully simulate the
computer.

● We're going to take this as an article of faith in
CS103. If you curious for more details, come talk to
me after class.

Computational
Device

Yep

Nah

input

Can a TM Work With…

Sure! A picture is just a
2D array of colors, and

a color can be
represented as a series

of numbers.

“cat pictures?”

Can a TM Work With…

If you think about it, a
video is just a series of

pictures!“cat videos?”
“cat pictures?”

Can a TM Work With…

Sure! Music is encoded as a
compressed waveform. That’s just

a list of numbers.

“music?”

Sure! That’s just applying a
bunch of matrices and nonlinear

functions to some input.

“deep learning?”

Just how powerful are Turing machines?

E6ective Computation

● An e"ective method of computation is a form
of computation with the following properties:

– The computation consists of a set of steps.

– There are &xed rules governing how one step leads
to the next.

– Any computation that yields an answer does so in
&nitely many steps.

– Any computation that yields an answer always yields
the correct answer.

● This is not a formal de&nition. Rather, it's a set
of properties we expect out of a computational
system.

The Church-Turing Thesis claims that

every e"ective method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsi&able scienti&c hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
solvable by

Turing
Machines

TMs and Computation

● Because Turing machines have the same
computational powers as regular computers, we can
(essentially) reason about Turing machines by
reasoning about actual computer programs.

● Going forward, we're going to switch back and
forth between TMs and more C++ or python-
like computer programs based on whatever is
most appropriate.

● In fact, our eventual proofs about the existence of
impossible problems will involve a good amount of
pseudocode. Stay tuned for details!

Decidability and Recognizability

What problems can we solve with a computer?

What kind of
computer?

What problems can we solve with a computer?

What does it
mean to “solve” a

problem?

A Simple Turing Machine

● Here’s a TM.

● It receives inputs
over the alphabet

Σ = {a, b}.

● What strings does
this TM accept?

● What happens when
you give it these

strings: a, aaa, bb,

baaa

Start:
 If 'a' Return True
Loop:
 Move Right
 If Not 'b' Goto Loop

Start:
 If 'a' Return True
Loop:
 Move Right
 If Not 'b' Goto Loop

An Important Observation

● Unlike &nite automata, which automatically halt
after all the input is read, TMs keep running
until they explicitly return true or return false.

● As a result, it’s possible for a TM to run forever
without accepting or rejecting.

● This leads to several important questions:

– How do we formally de&ne what it means to build a
TM for a language?

– What implications does this have about problem-
solving?

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M halts on a string w if it returns on w (i.e., we don’t care if it
returns true or false, just that it returns at all).

● M loops in)nitely (or just loops) on a string w if when run on
w it neither returns true nor returns false (i.e., it doesn’t halt).

Accept

Loop

Reject
does not accept

does not reject

halts

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M halts on a string w if it returns on w (i.e., we don’t care if it
returns true or false, just that it returns at all).

● M loops in)nitely (or just loops) on a string w if when run on
w it neither returns true nor returns false (i.e., it doesn’t halt).

Accept

Loop

Reject
does not accept

does not reject

halts

To be in the language of M, a
string must be accepted by M.
No answer/looping is the same as
rejection, in terms of meaning
that the string is not in the
language of M.

To be in the language of M, a
string must be accepted by M.
No answer/looping is the same as
rejection, in terms of meaning
that the string is not in the
language of M.

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M halts on a string w if it returns on w (i.e., we don’t care if it
returns true or false, just that it returns at all).

● M loops in)nitely (or just loops) on a string w if when run on
w it neither returns true nor returns false (i.e., it doesn’t halt).

Accept

Loop

Reject
does not accept

does not reject

halts

To be in the language of M, a
string must be accepted by M.
No answer/looping is the same as
rejection, in terms of meaning
that the string is not in the
language of M.

To be in the language of M, a
string must be accepted by M.
No answer/looping is the same as
rejection, in terms of meaning
that the string is not in the
language of M.

Turing Machines practice
a6irmative consent! Nice!

Turing Machines practice
a6irmative consent! Nice!

● A TM M is called a recognizer for a language L over Σ if
the following statement is true:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● If w ∈ L, then, eventually, M will accept w.

● For all strings not in L, M may reject or may in&nite loop.

● Usefulness of this as a computer:

– If you don’t already know whether w ∈ L, running M on w may
never tell you anything.

– M might loop on w – but you can’t di6erentiate between “it’ll
never give an answer” and “just wait a bit more.”

– This is a very weak de&nition of “solving a problem,” but we are
after all exploring the outer extremes of what computers can do

Recognizers and Recognizability

Each of these pieces of code is a recognizer for some language.

What language does each recognizer recognize?

bool pizkwat(string input) {

 return false;
}

bool pizkwat(string input) {

 return false;
}

bool squigglebah(string input) {

 while (true) {
 // do nothing
 }
}

bool squigglebah(string input) {

 while (true) {
 // do nothing
 }
}

bool moozle(string input) {

 int oot = 1;

 while (input.size() != oot) {
 oot += oot;
 }

 return true;
}

bool moozle(string input) {

 int oot = 1;

 while (input.size() != oot) {
 oot += oot;
 }

 return true;
}

bool humblegwah(string input) {

 if (input.size() % 2 != 0) return false;

 for (int i = 0; i < input.size() / 2; i++) {

 if (input[2 * i] != input[2 * i + 1]) {

 return false;
 }
 }

 return true;
}

bool humblegwah(string input) {

 if (input.size() % 2 != 0) return false;

 for (int i = 0; i < input.size() / 2; i++) {

 if (input[2 * i] != input[2 * i + 1]) {

 return false;
 }
 }

 return true;
}

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

Deciders and Decidability

● Some, but not all, TMs have the following
property: the TM halts on all inputs.

● Such a TM is called a “Decider.”

– All deciders are recognizers.

– Not all recognizers are deciders.

Accept

Reject

 halts (always)

does not accept

does not reject

Deciders and Decidability

● A TM M is called a decider for a language L
over Σ if the following statements are true:

∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

● In other words, M accepts all strings in L and
rejects all strings not in L.

● In other words, M is a recognizer for L, and M
halts on all inputs.

● No matter what input string w you give a decider
TM, you will always get a clear yes or no answer.

Each piece of code is a recognizer for a language.

Which are deciders?

bool pizkwat(string input) {

 return false;
}

bool pizkwat(string input) {

 return false;
}

bool squigglebah(string input) {

 while (true) {
 // do nothing
 }
}

bool squigglebah(string input) {

 while (true) {
 // do nothing
 }
}

bool moozle(string input) {

 int oot = 1;

 while (input.size() != oot) {
 oot += oot;
 }

 return true;
}

bool moozle(string input) {

 int oot = 1;

 while (input.size() != oot) {
 oot += oot;
 }

 return true;
}

bool humblegwah(string input) {

 if (input.size() % 2 != 0) return false;

 for (int i = 0; i < input.size() / 2; i++) {

 if (input[2 * i] != input[2 * i + 1]) {

 return false;
 }
 }

 return true;
}

bool humblegwah(string input) {

 if (input.size() % 2 != 0) return false;

 for (int i = 0; i < input.size() / 2; i++) {

 if (input[2 * i] != input[2 * i + 1]) {

 return false;
 }
 }

 return true;
}

∀w ∈ Σ*. M halts on w

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)

A Tricky TM

The Hailstone Sequence

● Consider the following procedure,
starting with some n ∈ ℕ, where n > 0:

– If n = 1, you are done.

– If n is even, set n = n / 2.

– Otherwise, set n = 3n + 1.

– Repeat.

● Question: Given a natural number n > 0,
does this process terminate?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

The Hailstone Sequence

● Consider the following procedure, starting with
some n ∈ ℕ, where n > 0:

– If n = 1, you are done.

– If n is even, set n = n / 2.

– Otherwise, set n = 3n + 1.

– Repeat.

● Does the Hailstone Sequence terminate for…

– n = 5? Yes, after 5 steps.

– n = 20? Yes, after 7 steps.

– n = 7? Yes, after 16 steps.

– n = 27? Yes, after 111 steps.

The Hailstone Sequence

● Let Σ = {a} and consider the language

 L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● Could we build a TM for L?

The Hailstone Turing Machine

● We can build a TM that works as follows:

– If the input is ε, reject.

– While the string is not a:
● If the input has even length, halve the length of

the string.
● If the input has odd length, triple the length of

the string and append a a.

– Accept.

The Collatz Conjecture

● It is unknown whether this process will terminate for
all natural numbers.

● In other words, no one knows whether the TM
described in the previous slides will always stop
running!

● The conjecture (unproven claim) that the hailstone
sequence always terminates is called the Collatz
Conjecture.

● This problem has eluded a solution for a long time.
The in?uential mathematician Paul Erdős is reported
to have said “Mathematics may not be ready for such
problems.”

Hailstone Decider?

● The hailstone TM M we saw earlier is a recognizer
for the language

L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● If the hailstone sequence terminates for n, then M
accepts an. If it doesn’t, then M does not accept an.

● Is it also a decider?

Hailstone Decider?

● The hailstone TM M we saw earlier is a recognizer for
the language

L = { an | n > 0 and the hailstone
 sequence terminates for n }.

● If the hailstone sequence terminates for n, then M accepts
an. If it doesn’t, then M does not accept an.

● We honestly don’t know if M is a decider for this language.

– If the hailstone sequence always terminates, then M always halts
and is a decider for L, and L turns out to be just all strings an | n
> 0 (a Regular language!).

– If the hailstone sequence doesn’t always terminate, then M will
loop on some inputs and isn’t a decider for L, and L is some
strict subset of an | n > 0.

Two new language classes

Recognizers and Recognizability

● The class RE consists of all recognizable
languages.

● Formally speaking:

RE = { L | L is a language and there’s a

recognizer for L }

● You can think of RE as “all problems with
yes/no answers where “yes” answers can
be con&rmed by a computer.”

Deciders and Decidability

● The class R consists of all decidable languages.

● Formally speaking:

R = { L | L is a language and there exists a
decider for L }

● You can think of R as “all problems with yes/no
answers that can be fully solved by computers.”

–

● The class R contains all the regular languages,
all the context-free languages, most of CS161,
etc.

● This is a “strong” notion of solving a problem.

R and RE Languages

● Every decider for L is also a recognizer for L.

● This means that R ⊆ RE.

● Hugely important theoretical question:

R ≟ RE
● That is, if you can just con&rm “yes” answers to

a problem, can you necessarily solve that
problem?

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?

Unanswered Questions

● Why exactly is RE an interesting class
of problems?

● What does the R ≟ RE question mean?

● Is R = RE?

● What lies beyond R and RE?

● We'll see the answers to each of these in
due time.

Next Time

● Emergent Properties

– Larger phenomena made of smaller parts.

● Universal Machines

– A single, “most powerful” computer.

● Self-Reference

– Programs that ask questions about
themselves.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

