
  

Turing Machines
Part Two



  

Outline for Today

● The Church-Turing Thesis

– Just how powerful are TMs?

● What Does it Mean to Solve a 
Problem?

– Rethinking what “solving” a problem 
means, and two possible answers to that 
question.



  

Recap from Last Time



  

Turing Machines

● A Turing machine is a program that controls a tape 
head as it moves around an in&nite tape.

● There are six commands:

– Move direction

– Write symbol

– Goto label

– Return boolean

– If symbol command

– If Not symbol command

● Despite their limited vocabulary, TMs are surprisingly 
powerful.



  

A Sample Turing Machine

● Here’s a sample TM.

● It receives inputs 
over the alphabet 

Σ = {a, b}.

● What strings does 
this TM accept?

● Can you write a 
regex that matches 
precisely the strings 
this TM accepts?

Start:
    If Not 'a' Return False

Loop:
    Move Right
    If Not Blank Goto Loop
    Move Left
    Move Left
    If Not 'b' Return False
    Return True

Start:
    If Not 'a' Return False

Loop:
    Move Right
    If Not Blank Goto Loop
    Move Left
    Move Left
    If Not 'b' Return False
    Return True



  

New Stu6!



  

Main Questions for Today:

Just how powerful are Turing machines?

What problems can you solve with a computer?



  

Real and “Ideal” Computers

● A real computer has memory limitations: you 
have a &nite amount of RAM, a &nite amount of 
disk space, etc.

● However, as computers get more and more 
powerful, the amount of memory available 
keeps increasing.

● An idealized computer is like a regular 
computer, but with unlimited RAM and disk 
space. It functions just like a regular computer, 
but never runs out of memory.



  

Theorem: Turing machines are equal in 
power to idealized computers. That is, 
any computation that can be done on a 

TM can be done on an idealized computer 
and vice-versa.



  

Key Idea: Two models of computation
are equally powerful if they can

simulate each other.



  

Simulating a TM

● The individual commands in a TM are simple and 
perform only basic operations:

Move   Write   Goto   Return   If 

● The memory for a TM can be thought of as a string with 
some number keeping track of the current index.

● To simulate a TM, we need to

– see which line of the program we’re on,

– determine what command it is, and

– simulate that single command.

● Claim: This is reasonably straightforward to do on an 
idealized computer.

– My “core” logic for the TM simulator is under &fty lines of 
code, including comments.



  

Simulating a Computer

● Programming languages provide a set of 
simple constructs.

– Think things like variables, arrays, loops, 
functions, classes, etc.

● Key Idea: If a TM is powerful enough to 
simulate each of these individual pieces, 
it’s powerful enough to simulate 
anything a real computer can do.



  

Can TMs do: Loops?

● We’ve seen TMs use loops to solve problems.

– Our { anbn | n ∈ ℕ } TM repeatedly pulls o6 the 
&rst and last character from the string.

– Our sorting TM repeatedly &nds ba and replaces 

it with ab.

● In some sense, the existence of Goto and 
labels means that TMs have loops.

● Hopefully, it’s not too much of a stretch to 
think that TMs can do while loops, for loops, 
etc.



  

Can TMs do: arithmetic?

● We’ve seen TMs that perform basic 
arithmetic.

– We can check if two numbers are equal.

– We can check if a number is a Fibonacci 
number. 

● Hopefully, it’s not too much of a stretch 
to believe we could also do addition and 
subtraction, compute powers of numbers, 
do ceilings and ?oors, etc.



  

Can TMs do: variables?

● We’ve seen TMs that maintain variables.

– You can think of our TM for { anbn | n ∈ ℕ } as 
storing two variables – one that counts a number 

of a’s, and one that counts a number of b’s.

– Our TM for Fibonacci numbers kinda sorta ish 
tracks the last two Fibonacci numbers, plus the 
length of the input string.

● It’s a bit larger of a jump to make, but 
hopefully you’re comfortable with the idea 
that TMs, in principle, can maintain 
variables.



  

Can TMs do: helper functions?

● We’ve seen TMs with helper functions.

– We saw how to check for equal numbers of a’s and 

b’s by &rst sorting the string, then checking of the 

string has the form anbn.

– We can check if a decimal number is a Fibonacci 
number by converting it to unary, then running 
our unary Fibonacci checker.

● Hopefully you’re comfortable with the idea 
that a TM could have multiple “helper 
functions” that work together to solve some 
larger problem.



  

What Else Can TMs Do?

● Maintain strings and arrays.

– Store their elements separated with some 
special separator character.

● Support pointers.

– Maintain an array of what’s in memory, 
where each item is tagged with its “memory 
address.”

● Support function call and return.

– It’s hard, but you can do this if you can do 
helper functions and variables.



  

A Leap of Faith

● Claim: A TM is powerful enough to simulate any 
computer program that gets an input, processes 
that input, then returns some result. 

 

● The resulting TM might be colossal, or really slow, 
or both, but it would still faithfully simulate the 
computer.

● We're going to take this as an article of faith in 
CS103. If you curious for more details, come talk to 
me after class.

Computational
Device

Yep

Nah

input



  

Can a TM Work With…

Sure! A picture is just a 
2D array of colors, and 

a color can be 
represented as a series 

of numbers.

“cat pictures?”



  

Can a TM Work With…

If you think about it, a 
video is just a series of 

pictures!“cat videos?”
“cat pictures?”



  

Can a TM Work With…

Sure! Music is encoded as a 
compressed waveform. That’s just 

a list of numbers.

“music?”

Sure! That’s just applying a 
bunch of matrices and nonlinear 

functions to some input.

“deep learning?”



  

Just how powerful are Turing machines?



  

E6ective Computation

● An e"ective method of computation is a form 
of computation with the following properties:

– The computation consists of a set of steps.

– There are &xed rules governing how one step leads 
to the next.

– Any computation that yields an answer does so in 
&nitely many steps.

– Any computation that yields an answer always yields 
the correct answer.

● This is not a formal de&nition. Rather, it's a set 
of properties we expect out of a computational 
system.



  

The Church-Turing Thesis claims that

every e"ective method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsi&able scienti&c hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams



  

Regular
Languages CFLs

All Languages

Problems 
solvable by 

Turing 
Machines



  

TMs and Computation

● Because Turing machines have the same 
computational powers as regular computers, we can 
(essentially) reason about Turing machines by 
reasoning about actual computer programs.

● Going forward, we're going to switch back and 
forth between TMs and more C++ or python-
like computer programs based on whatever is 
most appropriate.

● In fact, our eventual proofs about the existence of 
impossible problems will involve a good amount of 
pseudocode. Stay tuned for details!



  

Decidability and Recognizability



  

What problems can we solve with a computer?

What kind of 
computer?



  

What problems can we solve with a computer?

What does it 
mean to “solve” a 

problem?



  

A Simple Turing Machine

● Here’s a TM.

● It receives inputs 
over the alphabet 

Σ = {a, b}.

● What strings does 
this TM accept?

● What happens when 
you give it these 

strings: a, aaa, bb, 

baaa  

Start:
    If 'a' Return True
Loop:
    Move Right
    If Not 'b' Goto Loop

Start:
    If 'a' Return True
Loop:
    Move Right
    If Not 'b' Goto Loop



  

An Important Observation

● Unlike &nite automata, which automatically halt 
after all the input is read, TMs keep running 
until they explicitly return true or return false.

● As a result, it’s possible for a TM to run forever 
without accepting or rejecting.

● This leads to several important questions:

– How do we formally de&ne what it means to build a 
TM for a language?

– What implications does this have about problem-
solving?



  

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M halts on a string w if it returns on w (i.e., we don’t care if it 
returns true or false, just that it returns at all).

● M loops in)nitely (or just loops) on a string w if when run on 
w it neither returns true nor returns false (i.e., it doesn’t halt).

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



  

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M halts on a string w if it returns on w (i.e., we don’t care if it 
returns true or false, just that it returns at all).

● M loops in)nitely (or just loops) on a string w if when run on 
w it neither returns true nor returns false (i.e., it doesn’t halt).

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts

To be in the language of M, a 
string must be accepted by M. 
No answer/looping is the same as 
rejection, in terms of meaning 
that the string is not in the 
language of M. 

To be in the language of M, a 
string must be accepted by M. 
No answer/looping is the same as 
rejection, in terms of meaning 
that the string is not in the 
language of M. 



  

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M halts on a string w if it returns on w (i.e., we don’t care if it 
returns true or false, just that it returns at all).

● M loops in)nitely (or just loops) on a string w if when run on 
w it neither returns true nor returns false (i.e., it doesn’t halt).

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts

To be in the language of M, a 
string must be accepted by M. 
No answer/looping is the same as 
rejection, in terms of meaning 
that the string is not in the 
language of M. 

To be in the language of M, a 
string must be accepted by M. 
No answer/looping is the same as 
rejection, in terms of meaning 
that the string is not in the 
language of M. 

Turing Machines practice 
a6irmative consent! Nice!

Turing Machines practice 
a6irmative consent! Nice!



  

● A TM M is called a recognizer for a language L over Σ if 
the following statement is true:

∀w ∈ Σ*. (w ∈ L  ↔  M accepts w)

● If w ∈ L, then, eventually, M will accept w.

● For all strings not in L, M may reject or may in&nite loop.

● Usefulness of this as a computer:

– If you don’t already know whether w ∈ L, running M on w may 
never tell you anything.

– M might loop on w – but you can’t di6erentiate between “it’ll 
never give an answer” and “just wait a bit more.”

– This is a very weak de&nition of “solving a problem,” but we are 
after all exploring the outer extremes of what computers can do

Recognizers and Recognizability



  
Each of these pieces of code is a recognizer for some language.

What language does each recognizer recognize?

bool pizkwat(string input) {

  return false;             
}                           

bool pizkwat(string input) {

  return false;             
}                           

bool squigglebah(string input) {

  while (true) {                
    // do nothing               
  }                             
}                               

bool squigglebah(string input) {

  while (true) {                
    // do nothing               
  }                             
}                               

bool moozle(string input) {    

  int oot = 1;                 

  while (input.size() != oot) {
    oot += oot;                
  }                            

  return true;                 
}                              

bool moozle(string input) {    

  int oot = 1;                 

  while (input.size() != oot) {
    oot += oot;                
  }                            

  return true;                 
}                              

bool humblegwah(string input) {

  if (input.size() % 2 != 0) return false;
 

  for (int i = 0; i < input.size() / 2; i++) {

    if (input[2 * i] != input[2 * i + 1]) {

      return false;
    }
  }

  return true;
}

bool humblegwah(string input) {

  if (input.size() % 2 != 0) return false;
 

  for (int i = 0; i < input.size() / 2; i++) {

    if (input[2 * i] != input[2 * i + 1]) {

      return false;
    }
  }

  return true;
}

∀w ∈ Σ*. (w ∈ L    ↔    M accepts w)



  

Deciders and Decidability

● Some, but not all, TMs have the following 
property: the TM halts on all inputs.

● Such a TM is called a “Decider.”

– All deciders are recognizers.

– Not all recognizers are deciders. 

Accept

Reject

                          halts (always)

does not accept                                   

does not reject                                   



  

Deciders and Decidability

● A TM M is called a decider for a language L 
over Σ if the following statements are true:

∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L   ↔   M accepts w)

● In other words, M accepts all strings in L and 
rejects all strings not in L.

● In other words, M is a recognizer for L, and M 
halts on all inputs.

● No matter what input string w you give a decider 
TM, you will always get a clear yes or no answer.



  
Each piece of code is a recognizer for a language.

Which are deciders?

bool pizkwat(string input) {

  return false;             
}                           

bool pizkwat(string input) {

  return false;             
}                           

bool squigglebah(string input) {

  while (true) {                
    // do nothing               
  }                             
}                               

bool squigglebah(string input) {

  while (true) {                
    // do nothing               
  }                             
}                               

bool moozle(string input) {    

  int oot = 1;                 

  while (input.size() != oot) {
    oot += oot;                
  }                            

  return true;                 
}                              

bool moozle(string input) {    

  int oot = 1;                 

  while (input.size() != oot) {
    oot += oot;                
  }                            

  return true;                 
}                              

bool humblegwah(string input) {

  if (input.size() % 2 != 0) return false;
 

  for (int i = 0; i < input.size() / 2; i++) {

    if (input[2 * i] != input[2 * i + 1]) {

      return false;
    }
  }

  return true;
}

bool humblegwah(string input) {

  if (input.size() % 2 != 0) return false;
 

  for (int i = 0; i < input.size() / 2; i++) {

    if (input[2 * i] != input[2 * i + 1]) {

      return false;
    }
  }

  return true;
}

∀w ∈ Σ*. M halts on w
 

∀w ∈ Σ*. (w ∈ L    ↔    M accepts w)



  

A Tricky TM



  

The Hailstone Sequence

● Consider the following procedure, 
starting with some n ∈ ℕ, where n > 0:

– If n = 1, you are done.

– If n is even, set n = n / 2.

– Otherwise, set n = 3n + 1.

– Repeat.

● Question: Given a natural number n > 0, 
does this process terminate?



  

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.
 

· If n is even, set n = n / 2.
 

· Otherwise, set n = 3n + 1.
 

· Repeat.

· If n = 1, stop.
 

· If n is even, set n = n / 2.
 

· Otherwise, set n = 3n + 1.
 

· Repeat.



  

The Hailstone Sequence

● Consider the following procedure, starting with 
some n ∈ ℕ, where n > 0:

– If n = 1, you are done.

– If n is even, set n = n / 2.

– Otherwise, set n = 3n + 1.

– Repeat.

● Does the Hailstone Sequence terminate for…

– n = 5?  Yes, after 5 steps.

– n = 20? Yes, after 7 steps.

– n = 7?  Yes, after 16 steps.

– n = 27? Yes, after 111 steps.



  

The Hailstone Sequence

● Let Σ = {a} and consider the language

   L = { an | n > 0 and the hailstone
                   sequence terminates for n }.

● Could we build a TM for L?



  

The Hailstone Turing Machine

● We can build a TM that works as follows:

– If the input is ε, reject.

– While the string is not a:
● If the input has even length, halve the length of 

the string.
● If the input has odd length, triple the length of 

the string and append a a.

– Accept.



  

The Collatz Conjecture

● It is unknown whether this process will terminate for 
all natural numbers.

● In other words, no one knows whether the TM 
described in the previous slides will always stop 
running!

● The conjecture (unproven claim) that the hailstone 
sequence always terminates is called the Collatz 
Conjecture.

● This problem has eluded a solution for a long time. 
The in?uential mathematician Paul Erdős is reported 
to have said “Mathematics may not be ready for such 
problems.”



  

Hailstone Decider?

● The hailstone TM M we saw earlier is a recognizer 
for the language

L = { an | n > 0 and the hailstone
                         sequence terminates for n }.

● If the hailstone sequence terminates for n, then M 
accepts an. If it doesn’t, then M does not accept an.

● Is it also a decider?



  

Hailstone Decider?

● The hailstone TM M we saw earlier is a recognizer for 
the language

L = { an | n > 0 and the hailstone
                         sequence terminates for n }.

● If the hailstone sequence terminates for n, then M accepts 
an. If it doesn’t, then M does not accept an.

● We honestly don’t know if M is a decider for this language.

– If the hailstone sequence always terminates, then M always halts 
and is a decider for L, and L turns out to be just all strings  an | n 
> 0 (a Regular language!).

– If the hailstone sequence doesn’t always terminate, then M will 
loop on some inputs and isn’t a decider for L, and L is some 
strict subset of an | n > 0.



  

Two new language classes



  

Recognizers and Recognizability

● The class RE consists of all recognizable 
languages.

● Formally speaking:

RE = { L | L is a language and there’s a 

recognizer for L }

● You can think of RE as “all problems with 
yes/no answers where “yes” answers can 
be con&rmed by a computer.”



  

Deciders and Decidability

● The class R consists of all decidable languages.

● Formally speaking:

R = { L | L is a language and there exists a 
decider for L }

● You can think of R as “all problems with yes/no 
answers that can be fully solved by computers.”

–

● The class R contains all the regular languages, 
all the context-free languages, most of CS161, 
etc.

● This is a “strong” notion of solving a problem.



  

R and RE Languages

● Every decider for L is also a recognizer for L.

● This means that R ⊆ RE.

● Hugely important theoretical question:

R ≟ RE
● That is, if you can just con&rm “yes” answers to 

a problem, can you necessarily solve that 
problem?



  

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?



  

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?



  

Unanswered Questions

● Why exactly is RE an interesting class 
of problems?

● What does the R  ≟ RE question mean?

● Is R = RE?

● What lies beyond R and RE?

● We'll see the answers to each of these in 
due time.



  

Next Time

● Emergent Properties

– Larger phenomena made of smaller parts.

● Universal Machines

– A single, “most powerful” computer.

● Self-Reference

– Programs that ask questions about 
themselves.
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